Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 722
Filtrar
1.
Bioorg Med Chem ; 98: 117540, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134663

RESUMO

Global challenges with treatment failures and/or widespread resistance in parasitic worms against commercially available anthelmintics lend impetus to the development of new anthelmintics with novel mechanism(s) of action. The free-living nematode Caenorhabditis elegans is an important model organism used for drug discovery, including the screening and structure-activity investigation of new compounds, and target deconvolution. Previously, we conducted a whole-organism phenotypic screen of the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) and identified a hit compound, called ABX464, with activity against C. elegans and a related, parasitic nematode, Haemonchus contortus. Here, we tested a series of 44 synthesized analogues to explore the pharmacophore of activity on C. elegans and revealed five compounds whose potency was similar or greater than that of ABX464, but which were not toxic to human hepatoma (HepG2) cells. Subsequently, we employed thermal proteome profiling (TPP), protein structure prediction and an in silico-docking algorithm to predict ABX464-target candidates. Taken together, the findings from this study contribute significantly to the early-stage drug discovery of a new nematocide based on ABX464. Future work is aimed at validating the ABX464-protein interactions identified here, and at assessing ABX464 and associated analogues against a panel of parasitic nematodes, towards developing a new anthelmintic with a mechanism of action that is distinct from any of the compounds currently-available commercially.


Assuntos
Anti-Helmínticos , Nematoides , Quinolinas , Animais , Humanos , Caenorhabditis elegans , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Relação Estrutura-Atividade
2.
Int J Pharm ; 644: 123315, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37579827

RESUMO

In this paper we report a successful example of combining drugs through cocrystallization. Specifically, the novel solid is formed by two anthelminthic drugs, namely praziquantel (PZQ) and niclosamide (NCM) in a 1:3 molar ratio, and it can be obtained through a sustainable one-step mechanochemical process in the presence of micromolar amounts of methanol. The novel solid phase crystallizes in the monoclinic space group of P21/c, showing one PZQ and three NCM molecules linked through homo- and heteromolecular hydrogen bonds in the asymmetric unit, as also attested by SSNMR and FT-IR results. A plate-like habitus is evident from scanning electron microscopy analysis with a melting point of 202.89 °C, which is intermediate to those of the parent compounds. The supramolecular interactions confer favorable properties to the cocrystal, preventing NCM transformation into the insoluble monohydrate both in the solid state and in aqueous solution. Remarkably, the PZQ - NCM cocrystal exhibits higher anthelmintic activity against in vitro S. mansoni models than corresponding physical mixture of the APIs. Finally, due to in vitro promising results, in vivo preliminary tests on mice were also performed through the administration of minicapsules size M.


Assuntos
Anti-Helmínticos , Praziquantel , Animais , Camundongos , Praziquantel/farmacologia , Praziquantel/química , Niclosamida/farmacologia , Antiparasitários , Preparações Farmacêuticas , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Schistosoma mansoni
3.
Nat Prod Rep ; 40(11): 1754-1808, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37555325

RESUMO

Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.


Assuntos
Anti-Helmínticos , Produtos Biológicos , Doenças do Gato , Doenças do Cão , Helmintos , Nematoides , Animais , Bovinos , Ovinos , Cavalos , Cães , Gatos , Suínos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doenças do Gato/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/parasitologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Anti-Helmínticos/uso terapêutico
4.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446937

RESUMO

Plant tannins are known for their anthelmintic and antiparasitic activities and have been increasingly studied to battle the ever-growing problem of anthelmintic resistance. While tannins have been shown to exhibit these activities on their own, one approach would be to use them as complementary nutrients alongside commercial anthelmintics. So far, research on the interactions between tannins and anthelmintics is limited, and few studies have reported both synergistic and antagonistic effects depending on the type of tannin and the method used. These interactions could either strengthen or weaken the efficacy of commercial anthelmintics, especially if tannin-rich diets are combined with anthelmintics used as oral drenches. To study these interactions, a series of hydrolysable tannins (HTs) was selected, and their direct interactions with thiabendazole (TBZ) were evaluated by isothermal titration calorimetry (ITC), which allowed the detection of the exothermic interaction but also the roles and significances of different structural features of HTs in these interactions. Our results show that HTs can have a direct interaction with the benzimidazole anthelmintic TBZ and that the interaction is strengthened by increasing the number of free galloyl groups and the overall molecular flexibility of HTs.


Assuntos
Anti-Helmínticos , Taninos , Taninos/farmacologia , Taninos/química , Anti-Helmínticos/química , Extratos Vegetais/química , Taninos Hidrolisáveis , Tiabendazol , Calorimetria/métodos
5.
Vet Parasitol ; 320: 109971, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331171

RESUMO

Acacia bilimekii is a plant with a high content of protein, fibre, and condensed tannins, making it an excellent feed for small ruminants with anthelmintic potential. This study aimed to evaluate the ovicidal activity of a hydroalcoholic extract (Ab-HA) and fractions from A. bilimekii aerial parts on Haemonchus contortus. The ovicidal activity of the Ab-HA extract and its fractions obtained by chromatographic fractionation were evaluated through the egg hatching inhibition (EHI) test. The results showed that the Ab-HA extract had 91% EHI at 20,000 µg/mL with a mean effective concentration (EC50) of 9260 µg/mL. After liquid-liquid fractionation of Ab-HA extract, the aqueous fraction (Ab-Aq) did not show ovicidal activity, whereas the organic fraction (Ab-EtOAc) showed a better EHI than the Ab-HA extract (98.9% at 2500 µg/mL). Then, the chemical fractionation of Ab-EtOAc allowed obtaining six bioactive fractions (AbR12-17) with an EHI greater than 90% at 1500 µg/mL. The best treatment was AbR15 (98.7% EHI at 750 µg/mL). Chemical analysis by HPLC-PDA of AbR15 indicated the presence of p-coumaric acid and the flavone luteolin as major compounds. Additionally, the commercial p-coumaric acid standard was evaluated in the EHI assay and showed an EHI of 97% at 62.5 µg/mL. Meanwhile, the confocal laser scanning microscopy analysis demonstrated a colocalization effect between p-coumaric acid and the H. contortus embryonated eggs. These results indicate that due to their major chemical compounds (including p-coumaric acid), the aerial parts of the plant A. bilimekii, could be considered as natural potential tool for controlling haemonchosis in small ruminants.


Assuntos
Acacia , Anti-Helmínticos , Haemonchus , Animais , Acacia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Óvulo , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Larva , Componentes Aéreos da Planta
6.
J Ethnopharmacol ; 312: 116453, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37019160

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gastrointestinal nematodes (GIN) control in small ruminants has relied on the systematic use of synthetic anthelmintics (AH), their effectiveness has been progressively decreasing due to the rise and diffusion of anthelmintic resistances. The most prevalent genera affecting small ruminants were Haemonchus spp., and Trichostrongylus spp. The investigation of new anthelmintics in plants is a highly studied option, especially when it is linked to ethnobotanical knowledge and phenolic compounds. THE AIMS OF OUR STUDY: Four medicinal plants mentioned in traditional medicine were selected to evaluate their anthelmintic proprieties at different stages of the life cycle of GIN, namely: Kyllinga odorata Valh., Cassia occidentalis L., Artemisia absinthium L, and Verbena litoralis Kunth and to explore the role of polyphenols in the AH activity. MATERIALS AND METHODS: To evaluate the anthelmintic activity in this study, two models of GIN species, namely Haemonchus contortus (Hc) and Trichostrongylus colubriformis (Tc) were selected and tested on two in vitro assays: 1) Larval Exsheathment Inhibition Assay (LEIA) and, 2) Egg Hatch Assay (EHA). To explore the role of tannins and polyphenols in AH activity by comparing the effects of LEIA and EHA with or without polyvinylpolypyrrolidone (PVPP) and to characterize the phytochemical composition of the most active plants using ultra-high performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS). RESULTS: C. occidentalis exhibited the highest activity on LEIA (EC50 = 250.42-41.80 µg/mL) and A. absinthium on egg hatching processes (EC50 = 121.70-137.34 µg/mL) in both species of GIN. The inhibition in the development of eggs was from 67.70% to 96.36% on H. contortus, and from 78.87% to 99.65% on T. colubriformis. At the maximal dose, Additionally, it was observed that the AH on eggs varies according to the GIN species: on H. contortus the extracts tested blocked the formation of larvae Ovicidal Effect (% higher OE) and on T. colubriformis they blocked the appearance of L1 larvae, Larvae Failing Eclosion (% higher LFE). After PVPP, a reduction in AH activity on LEIA and EHA was noted, especially with C. occidentalis (87.20-67.00% of larvae exsheathment, (p < 0.05) and 40.51-24.96% of egg hatching, (p > 0.05) of both parasite species. Nine putative features were identified using HRMS and MS/MS after addition of PVPP. CONCLUSIONS: The present study demonstrated that C. occidentalis, A. absinthium, and K. odorata, which parts have been traditionally used as medicinal plants are a valuable source of active compounds with anthelmintic activity. The medicinal use of these plants against GIN parasites was proven by in vitro analysis. Therefore exploration of the secondary metabolites of these plant extracts and testing of isolated fractions of active compounds under in vivo experiments are planned and represent a specific challenge for alternative drug research. Regarding the PVPP, in this study we hypotheses about the standard doses it was not able to completely absorb the polyphenols of extracts of K. odorata, C. occidentalis, and A. absinthium, which would lead to more studies to evaluate the role of this product in the absorption of phenolic compounds.


Assuntos
Anti-Helmínticos , Haemonchus , Plantas Medicinais , Animais , Polifenóis/farmacologia , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Fenóis/farmacologia , Ruminantes/parasitologia , Larva
7.
Mol Pharm ; 20(4): 2009-2016, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36884008

RESUMO

Praziquantel (PZQ) is a chiral class-II drug, and it is used as a racemate for the treatment of schistosomiasis. The knowledge of several cocrystals with dicarboxylic acids has prompted the realization of solid solutions of PZQ with both enantiomers of malic acid and tartaric acid. Here, the solid form landscape of such a six-component system has been investigated. In the process, two new cocrystals were structural-characterized and three non-stoichiometric, mixed crystal forms identified and isolated. Thermal and solubility analysis indicates a fourfold solubility advantage for the newly prepared solid solutions over the pure drug. In addition, a pharmacokinetic study was conducted in rats, which involved innovative mini-capsules for the oral administration of the solid samples. The available data indicate that the faster dissolution rate of the solid solutions translates in faster absorption of the drug and helps maintain a constant steady-state concentration.


Assuntos
Anti-Helmínticos , Praziquantel , Animais , Ratos , Praziquantel/química , Anti-Helmínticos/química , Solubilidade
8.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555386

RESUMO

Parasitic helminths continue to pose problems in human and veterinary medicine, as well as in agriculture. Semen pharbitidis, the seeds of Pharbitis nil (Linn.) Choisy (Convolvulaceae), is a well-known traditional Chinese medicinal botanical preparation widely used for treating intestinal parasites in China owing to its desirable efficacy. However, the anthelmintic compounds in Semen pharbitidis and their mechanism of action have not been investigated yet. This study aimed to identify the compounds active against helminths from Semen pharbitidis, and to establish the mechanism of action of these active compounds. Bioassay-guided fractionation was used to identify the anthelmintic compounds from Semen pharbitidis. The anthelmintic assay was performed by monitoring Caenorhabditis elegans (C. elegans) motility with a WMicrotracker instrument. Active compounds were identified by high-resolution mass spectrometry. Several (analogues of) fragments of the anthelmintic compounds were purchased and tested to explore the structure-activity relationship, and to find more potent compounds. A panel of C. elegans mutant strains resistant to major currently used anthelmintic drugs was used to explore the mechanism of action of the active compounds. The bioassay-guided isolation from an ethanol extract of Semen pharbitidis led to a group of glycosides, namely pharbitin (IC50: 41.0 ± 9.4 µg/mL). Hit expansion for pharbitin fragments yielded two potent analogues: 2-bromohexadecanoic acid (IC50: 1.6 ± 0.7 µM) and myristoleic acid (IC50: 35.2 ± 7.6 µM). One drug-resistant mutant ZZ37 unc-63 (x37) demonstrated a ~17-fold increased resistance to pharbitin compared with wild-type worms. Collectively, we provide further experimental scientific evidence to support the traditional use of Semen pharbitidis for the treatment of intestinal parasites. The anthelmintic activity of Semen pharbitidis is due to pharbitin, whose target could be UNC-63 in C. elegans.


Assuntos
Anti-Helmínticos , Extratos Vegetais , Animais , Humanos , Extratos Vegetais/química , Caenorhabditis elegans , Sementes , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Glicosídeos/farmacologia , Bioensaio/métodos
9.
Sci Rep ; 12(1): 18850, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344622

RESUMO

Tannins and tanniferous plant extracts have been discussed as sustainable means for helminth control in the past two decades in response to a dramatic increase of resistances towards standard anthelmintics. While their bioactivities have been broadly investigated in vitro and in vivo, less is known about their mode of action in nematodes, apart from their protein binding properties. In the current study we therefore investigated the impact of a phytochemically well characterized plant extract from Combretum mucronatum, known to contain procyanidins as the active compounds, on the model organism Caenorhabditis elegans. By different microscopic techniques, the cuticle was identified as the main binding site for tannins, whereas underlying tissues did not seem to be affected. In addition to disruptions of the cuticle structure, molting defects occurred at all larval stages. Finally, an increased rigidity of the nematodes' cuticle due to binding of tannins was confirmed by force spectroscopic measurements. This could be a key finding to explain several anthelmintic activities reported for tannins, especially impairment of molting or exsheathment as well as locomotion.


Assuntos
Anti-Helmínticos , Proantocianidinas , Animais , Proantocianidinas/farmacologia , Proantocianidinas/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Taninos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Caenorhabditis elegans , Larva
10.
Vet Parasitol ; 312: 109835, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306627

RESUMO

Small ruminant production in tropical and temperate countries faced substantial anthelmintic resistance due to the intensive use of commercial anthelmintic drugs. Therefore, alternative treatments including natural bioactive compounds with anthelmintic potential have been investigated looking for its successfully use in the parasite control. In the present study, we describe the chemical profile of Laurus nobilis essential oil (EO), the in vitro anthelmintic activity of L. nobilis EO against Haemonchus contortus and its in vivo anthelmintic effect against the murine helminth parasite model Heligmosomoides polygyrus. Chromatographic profile of L. nobilis (EO) extracted from the leaves of L. nobilis have shown the presence of monterpens 1,8-cineol (Eucalyptol) (29.47%), D-Limonène (18.51%) and Linalool (10.84%) in high fractions. The in vitro anthelmintic potential was expressed by an ovicidal effect against H. contortus egg hatching with inhibition value of 1.72 mg/mL and 87.5% of immobility of adult worms after 8 h of exposure to 4 mg/mL of L. nobilis EO. Regarding, the in vivo anthelmintic potential, L. nobilis (EO) at 2400 mg/kg bw completely eliminated the egg output of H. polygyrus after 7 days of oral treatment, together with a 79.2% of reduction in total worm counts. Based on the obtained results, L. nobilis EO showed promising in vitro and in vivo anthelmintic capacities against gastrointestinal parasites.


Assuntos
Anti-Helmínticos , Hemoncose , Haemonchus , Laurus , Nematospiroides dubius , Óleos Voláteis , Doenças dos Roedores , Ovinos , Animais , Camundongos , Óleos Voláteis/química , Hemoncose/tratamento farmacológico , Hemoncose/veterinária , Hemoncose/parasitologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/química , Compostos Fitoquímicos/farmacologia , Carneiro Doméstico , Doenças dos Roedores/tratamento farmacológico
11.
Acta Parasitol ; 67(4): 1603-1611, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36066696

RESUMO

PURPOSE: In the present study, the nematicidal activity of the chemical fractionation of the spent substrate of the edible mushroom Pleurotus ostreatus against eggs and L3 larvae of Haemonchus contortus was evaluated. METHODS: The hydroalcoholic extract of the spent substrate was subjected to a bipartition with ethyl acetate giving two fractions: one aqueous (F. Ac) and one organic (F. AcOET). Both fractions were evaluated against eggs and L3 larvae at different concentrations (5, 2.5, 1.25, 0.625 and 0.3125 mg/mL) and 2% methanol, PBS and thiabendazole (5 mg/mL) as controls. Chemical fractionation of F. AcOET was performed in open column chromatography where 76 fractions were obtained and when analyzed by thin layer chromatography (TLC) were grouped into 11 mixtures (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11). These mixtures were evaluated at 10 mg/mL against eggs and L3 larvae. The data obtained were analyzed by ANOVA and a Tukey test in the SAS V9 program. RESULTS: The results showed that, in the evaluation of F. AcOET and F. Ac, for the inhibition of egg hatching, the highest percentages were 78.80 and 76.89% at 5 mg/mL, respectively. As for the percentage of larval mortality, F. AcOET obtained 60.91 and F. Ac 29.77% at 5 mg/mL. The results of the evaluations of the mixtures showed that mixtures R4, R5 obtained 100 and 95.41% larval mortality and mixtures R6 and R7 presented 100% inhibitory activity of egg hatching, so these were analyzed by gas chromatography mass spectrometry finding compounds such as vanillin, ß-sitosterol, ρ-methyl ρ-hydroxycinnamate and ρ-hydroxybenzaldehyde. CONCLUSION: The results of the present study demonstrate that the spent substrate of P. ostreatus has potential anthelmintic activity against H. contortus. Moreover, by reusing and taking advantage of this substrate, its environmental pollution effects can be reduced.


Assuntos
Anti-Helmínticos , Haemonchus , Pleurotus , Animais , Extratos Vegetais/farmacologia , Antinematódeos/farmacologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Larva
12.
J Biol Chem ; 298(10): 102375, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970392

RESUMO

Parasitic diseases cause significant global morbidity and mortality particularly in the poorest regions of the world. Schistosomiasis, one of the most widespread neglected tropical diseases, affects more than 200 million people worldwide. Histone deacetylase (HDAC) inhibitors are prominent epigenetic drugs that are being investigated in the treatment of several diseases, including cancers and parasitic diseases. Schistosoma mansoni HDAC8 (SmHDAC8) is highly expressed in all life cycle stages of the parasite, and selective inhibition is required in order to avoid undesirable off-target effects in the host. Herein, by X-ray crystal structures of SmHDAC8-inhibitor complexes, biochemical and phenotypic studies, we found two schistosomicidal spiroindoline derivatives binding a novel site, next to Trp198, on the enzyme surface. We determined that by acting on this site, either by mutation of the Trp198 or by compound binding, a decrease in the activity of the enzyme is achieved. Remarkably, this allosteric site differs from the human counterpart; rather, it is conserved in all Schistosoma species, as well as Rhabidoptera and Trematoda classes, thus paving the way for the design of HDAC8-selective allosteric inhibitors with improved properties.


Assuntos
Anti-Helmínticos , Proteínas de Helminto , Inibidores de Histona Desacetilases , Histona Desacetilases , Schistosoma mansoni , Animais , Humanos , Sítios de Ligação , Proteínas de Helminto/química , Proteínas de Helminto/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Histona Desacetilases/genética , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Cristalografia por Raios X
13.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35566007

RESUMO

A recent screen of 67,012 compounds identified a new family of compounds with excellent nematicidal activity: the ortho-substituted benzamide families Wact-11 and Wact-12. These compounds are active against Caenorhabditis elegans and parasitic nematodes by selectively inhibiting nematode complex II, and they display low toxicity in mammalian cells and vertebrate organisms. Although a big number of benzamides were tested against C. elegans in high-throughput screens, bioisosteres of the amide moiety were not represented in the chemical space examined. We thus identified an opportunity for the design, synthesis and evaluation of novel compounds, using bioisosteric replacements of the amide group present in benzamides. The compound Wact-11 was used as the reference scaffold to prepare a set of bioisosteres to be evaluated against C. elegans. Eight types of amide replacement were selected, including ester, thioamide, selenoamide, sulfonamide, alkyl thio- and oxo-amides, urea and triazole. The results allowed us to perform a structure-activity relationship, highlighting the relevance of the amide group for nematicide activity. Experimental evidence was complemented with in silico structural studies over a C. elegans complex II model as a molecular target of benzamides. Importantly, compound Wact-11 was active against the flatworm Echinococcus granulosus, suggesting a previously unreported pan-anthelmintic potential for benzamides.


Assuntos
Anti-Helmínticos , Caenorhabditis elegans , Amidas , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Antinematódeos/farmacologia , Benzamidas/farmacologia , Mamíferos
14.
Molecules ; 27(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35408557

RESUMO

The treatment of parasitic infections requires the application of chemotherapy. In view of increasing resistance to currently in-use drugs, there is a constant need to search for new compounds with anthelmintic activity. A series of 16 cinnamylidene derivatives of rhodanine, including newly synthesized methoxy derivatives (1-11) and previously obtained chloro, nitro, and diethylamine derivatives (12-16), was investigated towards anthelmintic activity. Compounds (1-16) were evaluated against free-living nematodes of the genus Rhabditis sp. In the tested group of rhodanine derivatives, only compound 2 shows very high biological activity (LC50 = 0.93 µg/µL), which is higher than the reference drug albendazole (LC50 = 19.24 µg/µL). Crystal structures of two compounds, active 2 and inactive 4, were determined by the X-ray diffraction method to compare molecular geometry and search for differences responsible for observed biological activity/inactivity. Molecular modelling and selected physicochemical properties prediction were performed to assess the potential mechanism of action and applied in the search for an explanation as to why amongst all similar compounds only one is active. We can conclude that the tested compound 2 can be further investigated as a potential anthelmintic drug.


Assuntos
Anti-Helmínticos , Nematoides , Rhabditoidea , Rodanina , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Modelos Moleculares , Rodanina/química
15.
Appl Microbiol Biotechnol ; 106(5-6): 2191-2205, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35258669

RESUMO

Avermectins (AVEs) are economically potent anthelmintic agents produced by Streptomyces avermitilis. Among eight AVE components, B1a exhibits the highest insecticidal activity. The purpose of this study was to enhance B1a production, particularly in the high-yielding industrial strain A229, by a combination strategy involving the following steps. (i) aveC gene was engineered to increase B1a:B2a ratio. Three aveC variants (aveC2m, aveC5m, and aveC8m, respectively encoding two, five, and eight amino acid mutations) were synthesized by fusion PCR. B1a:B2a ratio in A229 derivative having kasOp*-controlled aveC8m reached 1.33 (B1a and B2a titers were 8120 and 6124 µg/mL). Corresponding values in A229 were 0.99 and 6447 and 6480 µg/mL. (ii) ß-oxidation pathway genes fadD and fadAB were overexpressed in wild-type (WT) strain and A229 to increase supply of acyl-CoA precursors for AVE production. The resulting strains all showed increased B1a titer. Co-overexpression of pkn5p-driven fadD and fadAB in A229 led to B1a titer of 8537 µg/mL. (iii) Genes bicA and ecaA involved in cyanobacterial CO2-concentrating mechanism (CCM) were introduced into WT and A229 to enhance carboxylation velocity of acetyl-CoA and propionyl-CoA carboxylases, leading to increased supply of malonyl- and methylmalonyl-CoA precursors and increased B1a titer. Co-expression of bicA and ecaA in A229 led to B1a titer of 8083 µg/mL. (iv) aveC8m, fadD-fadAB, and bicA-ecaA were co-overexpressed in A229, resulting in maximal B1a titer (9613 µg/mL; 49.1% increase relative to A229). Our findings demonstrate that the combination strategy we provided here is an efficient approach for improving B1a production in industrial strains.Key points• aveC mutation increased avermectin B1a:B2a ratio and B1a titer.• Higher levels of acyl-CoA precursors contributed to enhanced B1a production.• B1a titer in an industrial strain was increased by 49.1% via a combination strategy.


Assuntos
Anti-Helmínticos , Inseticidas , Streptomyces , Anti-Helmínticos/química , Inseticidas/metabolismo , Ivermectina/análogos & derivados , Streptomyces/genética , Streptomyces/metabolismo
16.
Expert Opin Drug Deliv ; 19(4): 383-393, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35264036

RESUMO

INTRODUCTION: Infections caused by parasitic flatworms impose a considerable worldwide health burden. Recently, World Health Organization launched its roadmap for neglected diseases for the period 2021 to 2030 and oral treatment with praziquantel (PZQ) in tablet form is the main drug therapy for combating these diseases, but its use is limited by many drawbacks, including the high therapeutic dose due to the drug's low solubility and bioavailability. Among the strategies to improve PZQ performance, the use of drug nanocarriers has been cited as an interesting approach to overcome these pharmacological issues. AREAS COVERED: This review focuses on the various types of nanomaterials (polymeric, lipidic, inorganic nanoparticles, and nanocrystals) which have been recently used to improve PZQ therapy. In addition, recent advances in PZQ nanoformulations, developed to overcome the barriers of the conventional drug are described. EXPERT OPINION: Considering the poor rate of discovery in the anthelmintic segment observed in recent decades, the effective management of existing drugs has become essential. The application of new strategies based on nanotechnology can extend the useful life of PZQ in new and more effective formulations. Pharmaceutical nanotechnology can solve the pharmacokinetic challenges characteristic of PZQ and improve its solubility and bioavailability.


Assuntos
Anti-Helmínticos , Helmintíase , Anti-Helmínticos/química , Anti-Helmínticos/uso terapêutico , Disponibilidade Biológica , Helmintíase/tratamento farmacológico , Humanos , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Solubilidade
17.
Microbiol Spectr ; 10(1): e0257721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138171

RESUMO

Entomopathogenic Photorhabdus bacteria (Enterobacteriaceae: Gamma-proteobacteria), the natural symbionts of Heterorhabditis nematodes, are a rich source for the discovery of biologically active secondary metabolites (SMs). This study describes the isolation of three nematicidal SMs from in vitro culture supernatants of the Arizona-native Photorhabdus luminescens sonorensis strain Caborca by bioactivity-guided fractionation. Nuclear magnetic resonance spectroscopy and comparison to authentic synthetic standards identified these bioactive metabolites as trans-cinnamic acid (t-CA), (4E)-5-phenylpent-4-enoic acid (PPA), and indole. PPA and t-CA displayed potent, concentration-dependent nematicidal activities against the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans), two economically and globally important plant parasitic nematodes (PPNs) that are ubiquitous in the United States. Southwest. Indole showed potent, concentration-dependent nematistatic activity by inducing the temporary rigid paralysis of the same targeted nematodes. While paralysis was persistent in the presence of indole, the nematodes recovered upon removal of the compound. All three SMs were found to be selective against the tested PPNs, exerting little effects on non-target species such as the bacteria-feeding nematode Caenorhabditis elegans or the entomopathogenic nematodes Steinernema carpocapsae, Heterorhabditis bacteriophora, and Hymenocallis sonorensis. Moreover, none of these SMs showed cytotoxicity against normal or neoplastic human cells. The combination of t-CA + PPA + indole had a synergistic nematicidal effect on both targeted PPNs. Two-component mixtures prepared from these SMs revealed complex, compound-, and nematode species-dependent interactions. These results justify further investigations into the chemical ecology of Photorhabdus SMs, and recommend t-CA, PPA and indole, alone or in combinations, as lead compounds for the development of selective and environmentally benign nematicides against the tested PPNs. IMPORTANCE Two phenylpropanoid and one alkaloid secondary metabolites were isolated and identified from culture filtrates of Photorhabdus l. sonorensis strain Caborca. The three identified metabolites showed selective nematicidal and/or nematistatic activities against two important plant parasitic nematodes, the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans). The mixture of all three metabolites had a synergistic nematicidal effect on both targeted nematodes, while other combinations showed compound- and nematode-dependent interactions.


Assuntos
Anti-Helmínticos/farmacologia , Photorhabdus/química , Doenças das Plantas/parasitologia , Metabolismo Secundário , Tylenchoidea/efeitos dos fármacos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/metabolismo , Cinamatos/química , Cinamatos/metabolismo , Cinamatos/farmacologia , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Estrutura Molecular , Photorhabdus/metabolismo , Tylenchoidea/crescimento & desenvolvimento
18.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164028

RESUMO

Combination therapy of many anthelmintic drugs has been used to achieve fast animal curing. Q-DRENCH is an oral suspension, containing four different active drugs against GIT worms in sheep, commonly used in Australia and New Zeeland. The anti-parasitic drugs are Albendazole (ALB), Levamisole HCl (LEV), Abamectin (ABA), and Closantel (CLO). The main purpose of this study is to present a new simultaneous stability-indicting HPLC-DAD method for the analysis of the four drugs. The recommended liquid system was 1 mL of Triethylamine/L water, adjusting the pH to 3.5 by glacial acetic acid: acetonitrile solvent (20:80, v/v). Isocratic elusion achieved the desired results of separation at a 2 mL/min flow rate using Zorbax C-18 as a stationary phase. Detection was performed at 210 nm. The linearity ranges were 15.15 to 93.75 µg/mL for ALB, 25 to 150 µg/mL for LEV, 30 to 150 µg/mL for ABA, and 11.7 to 140.63 µg/mL for CLO. Moreover, the final greenness score was 0.62 using the AGREE tool, which reflects the eco-friendly nature. Moreover, the four drugs were determined successfully in the presence of their stressful degradation products. This work presents the first chromatographic method for simultaneous analysis for Q-DRENCH oral suspension drugs in the presence of their stressful degradation products.


Assuntos
Albendazol/análise , Ivermectina/análogos & derivados , Levamisol/análise , Salicilanilidas/análise , Administração Oral , Albendazol/administração & dosagem , Albendazol/química , Albendazol/farmacocinética , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/análise , Anti-Helmínticos/química , Anti-Helmínticos/farmacocinética , Austrália , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Estudos de Avaliação como Assunto , Ivermectina/administração & dosagem , Ivermectina/análise , Ivermectina/química , Ivermectina/farmacocinética , Levamisol/administração & dosagem , Levamisol/química , Levamisol/farmacocinética , Limite de Detecção , Nova Zelândia , Salicilanilidas/administração & dosagem , Salicilanilidas/química , Salicilanilidas/farmacocinética , Ovinos , Suspensões
19.
Parasitol Int ; 88: 102535, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34995771

RESUMO

Dactylogyrus is a common parasitic pathogen, which causes high mortality of fish when presents in large numbers, resulting in serious economic losses. Herbal medicines contain myriad of bioactive compounds is a valuable reserve for developing safe and effective anti-parasite drugs. Here, we conducted bioassay-guided fractionation to isolate and identify the anti-parasitic constituents from Spatholobi caulis. Among five extraction solvents (petroleum ether, chloroform, ethyl acetate, methanol and water), S. caulis methanolic extract had the highest parasiticide activity in Carassius auratus, and therefore subjected to further separation and purification using multiple chromatography methods. One compound exhibiting the strongest parasiticidal activity was obtained and identified as ononin by analyzing its spectral data (NMR and ESI-MS). The EC50 value of ononin against Dactylogyrus was 0.655 mg/L and showed 100% parasiticide activity with 3.0 mg/L. The 24, 48, 72, 96 h LC50 for goldfish were 4.691 (the 95% CI of 4.526-4.873) mg/L, 4.612 (4.441-4.800) mg/L, 4.472 (4.345-4.607) mg/L, 4.288 (4.155-4.428) mg/L, respectively. The present results discovered for the first time that ononin had potent parasiticidal activity and have the potential to be developed as new anti-parasitic drug for the control of Dactylogyrus.


Assuntos
Anti-Helmínticos , Doenças dos Peixes , Platelmintos , Trematódeos , Animais , Anti-Helmínticos/química , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/parasitologia , Glucosídeos , Carpa Dourada/parasitologia , Isoflavonas , Extratos Vegetais/química
20.
J Ethnopharmacol ; 284: 114802, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34752900

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Leonotis leonurus (L.) R.Br. (Lamiaceae) is a perennial shrub native to South Africa used to treat various diseases including digestive tract problems, intestinal worms and constipation. AIM OF THE STUDY: The aim was to isolate and characterise nematicidal compounds from leaves of L. leonurus. MATERIALS AND METHODS: Bioassay-guided fractionation was carried out using the free-living nematode Caenorhabditis elegans as a model organism. Structural elucidation of the purified compound was carried out using NMR spectroscopic analyses and UPLC-QTOF-MS. The fractions and the isolated compound were tested for nematicidal activity on motility of plant-parasitic Meloidogyne incognita juveniles (J2s) and J2 hatch inhibition. Further screening was done to determine the minimum inhibitory concentration (MIC) of the fractions against bacterial phytopathogens and cytotoxicity against Vero kidney cells. RESULTS: Leoleorin C isolated from L. leonurus had moderate activity against C. elegans juveniles (34%) but was not active against J2 motility and J2 hatch of M. incognita. Thus, activity against the free-living C. elegans did not correspond with efficacy against plant-parasitic nematodes. Leoleorin C was not active against the tested bacterial phytopathogens, but some activity was observed in the bioautography assay against Clavibacter michiganensis subsp. michiganensis, the organism causing bacterial canker in tomatoes. The plant extract, fractions and leolorin C were relatively non-toxic to Vero cells with LC50 values greater than 0.01 mg/mL. CONCLUSION: The crude extract of L. leonurus and fractions may be useful in developing complementary treatments for controlling nematodes and phytopathogens. This study does not support the use of free-living nematodes as a model to isolate anti-parasitic compounds from plants.


Assuntos
Anti-Helmínticos , Caenorhabditis elegans , Lamiaceae , Extratos Vegetais , Folhas de Planta , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Sobrevivência Celular , Chlorocebus aethiops , Lamiaceae/química , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Tylenchoidea/efeitos dos fármacos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...